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This paper studies the nature of long-run behavior in a two-sector model of optimal
growth. Under some restrictions on the parameters of the model, we provide an explicit
solution of the optimal policy function generated by the optimal growth model. Fixing the
discount factor, we indicate how long-run optimal dynamics changes as a key
technological parameter (labor output ratio) changes. For a particular configuration of
parameter values, we also provide an explicit solution of the unique absolutely continuous
invariant ergodic distribution generated by the optimal policy function.
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1. INTRODUCTION

The purpose of this paper is to describe the nature of long-run behavior in a two-
sector model of optimal growth, and to indicate how that behavior changes with
respect to changes in a technological parameter of the model. The topic is best
viewed as an exercise in trying to understand the relationship between a dynamic
optimization model and the optimal policy function generated by it. A basic
question of interest in this area is whether the exercise of dynamic optimization
imposes some restrictions on the nature of the optimal policy function.

A number of studies1 devoted to this question demonstrated that optimal pro-
grams can exhibit a variety of long-run behavior, including cycles and chaos, by
constructing suitable examples in the context of various economic models, which
can all be considered to be particular cases of a “reduced-form” model (�, u, ρ),

where � is a transition possibility set determined by technological possibilities,
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LONG-RUN BEHAVIOR IN THE TWO-SECTOR RSS MODEL 71

u is a (reduced-form) utility function defined on this set, and ρ is the discount factor.
An aspect of the constructed examples in this literature is that the utility function
depends on the chosen discount factor. Thus, in a basic sense, this literature fails to
address the question of how optimal behavior changes with respect to a parameter
of the model when all other parameters of the model are held fixed (known as
“sensitivity” or “bifurcation” analysis).

Progress on bifurcation analysis with respect to the discount factor has been
made by several authors. In their seminal work, Benhabib and Nishimura (1985)
provided an analysis of changes in the local stability behavior of the stationary
optimal stock with changes in the discount factor. Boldrin and Deneckere (1990)
and Nishimura and Yano (1995) studied specific classes of two-sector neoclassical
models, which can generate optimal cycles and chaos, and showed how such
optimal behavior is affected by changes in the discount factor. Long-run optimal
behavior in a general reduced-form model (which allows for period-two optimal
cycles but no more complicated behavior than that) was undertaken in Mitra and
Nishimura (2001), where a complete bifurcation diagram was obtained without
explicit solution for the optimal policy function.

The present investigation can be seen as a continuation of this line of research.
It is clear from the literature that further progress on bifurcation analysis of long-
run optimal behavior will be difficult unless one is able to solve explicitly for
the optimal policy function, at least for substantial ranges of the parameters of
the model. Our research on the Robinson–Solow–Srinivasan (RSS) model [see
Khan and Mitra (2005) for references to the literature on which this model is
based] has indicated that a two-sector version of it would provide an appropriate
framework because it is both tractable (enabling explicit solution of the optimal
policy function) and rich in the variety of optimal dynamics that it can generate
(enabling a bifurcation analysis that would indicate how simple optimal dynamics
gives way to more complex optimal behavior as the parameters of the model
change).

The RSS two-sector model is specified by three parameters (a, d, ρ), where a

is the labor–output ratio in the investment good sector, d is the depreciation factor
of capital, and ρ is the discount factor. In this paper, in the context of this RSS
model, we provide three main results.

First, we provide sufficient conditions on the parameters of the model (a, d, ρ)

under which the optimal policy correspondence is an optimal policy function,
which can be explicitly specified to be a “check map” (an upside-down asymmetric
tent map), whose slopes are determined entirely by the technological parameters
a and d.

Second, after transforming the check map into an asymmetric tent map, we
show how a theorem of Lindstrom and Thunberg (2008) can be applied to our
framework to provide a bifurcation analysis of the optimal dynamics generated
by the model. Especially noteworthy in this regard is the result that, if we fix
the depreciation factor, d, and the discount factor, ρ, and carry out a bifurcation
analysis with respect to the labor–output ratio, a, we see that there is a threshold
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72 M. ALI KHAN AND TAPAN MITRA

value ã, such that (i) if the labor–output ratio a is higher than ã, then there is
a period-two optimal cycle, which attracts optimal paths from almost every initial
stock, whereas (ii) if the labor–output ratio a is lower than ã, then the dynamical
system exhibits a positive Lyapunov exponent (so that optimal trajectories starting
from very similar initial stocks tend to separate from each other exponentially over
time, indicating a sensitive dependence on initial conditions that is a characteristic
of chaotic behavior). The typical period-doubling route to chaos is noticeably
absent.

Third, for a particular configuration of the parameters of the model, we show
how a result of Boyarsky and Scarowsky (1979) can be applied to our model, to
provide a completely rigorous derivation of an explicit solution for the absolutely
continuous invariant ergodic distribution of the dynamical system generated by
the optimal policy function of the model. The explicit solution makes it possible
to predict precisely the fraction of time that a typical optimal trajectory will spend
in any region of the state space.

2. THE TWO-SECTOR ROBINSON–SOLOW–SRINIVASAN MODEL

A single consumption good is produced by infinitely divisible labor and machines,
with the further Leontief specification that a unit of labor and a unit of machines
produce a unit of the consumption good. In the investment-goods sector, only
labor is necessary to produce machines, with a > 0 units of labor producing a
unit of machines. Machines depreciate at the rate 0 < d < 1. A constant amount
of labor, normalized to unity, is available in each time period t ∈ N, where N
is the set of nonnegative integers. Thus, in the canonical formulation surveyed
in McKenzie (1986), the collection of production plans (x, x ′), the amount x ′

of machines in the next period (tomorrow) from the amount x available in the
current period (today), is given by the transition possibility set. Here it takes the
specific form � = {(x, x ′) ∈ R2

+ : x ′ − (1 − d)x ≥ 0 and a(x ′ − (1 − d)x) ≤ 1},
where z ≡ (x ′ − (1 − d)x) is the amount of machines that are produced, and
z ≥ 0 and az ≤ 1 respectively formalize constraints on the irreversiblity of
investment and the use of labor. Associated with � is the transition correspondence,
� : R+ → R+, given by �(x) = {x ′ ∈ R+ : (x, x ′) ∈ �}. For any (x, x ′) ∈ �,

one can also consider the amount y of machines available for the production
of the consumption good, leading to a correspondence: � : � −→ R+ with
�(x, x ′) = {y ∈ R+ : 0 ≤ y ≤ x and y ≤ 1 − a(x ′ − (1 − d)x)}.

Welfare is derived only from the consumption good and is represented by a
linear function, normalized so that y units of the consumption good yield a welfare
level y. A reduced-form utility function u : � → R+ with u(x, x ′) = max{y ∈
�(x, x ′)} indicates the maximum welfare level that can be obtained today if one
starts with x machines today, and ends up with x ′ machines tomorrow, where
(x, x ′) ∈ �. Intertemporal preferences are represented by the present value of the
stream of welfare levels, using a discount factor ρ ∈ (0, 1).
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LONG-RUN BEHAVIOR IN THE TWO-SECTOR RSS MODEL 73

A two-sector RSS model G consists of a triple (a, d, ρ), and the following
concepts apply to it. A program from xo is a sequence {x(t), y(t)} such that x(0) =
xo, and for all t ∈ N, (x(t), x(t + 1)) ∈ � and y(t) = max �((x(t), x(t + 1)).

A program {x(t), y(t)} is simply a program from x(0), and associated with it
is a gross investment sequence {z(t + 1)}, defined by z(t + 1) = (x(t + 1) −
(1 − d)x(t)) for all t ∈ N. It is easy to check that every program {x(t), y(t)} is
bounded by max{x(0), 1/ad} ≡ M(x(0)), and so

∑∞
t=0 ρtu(x(t), x(t +1)) < ∞.

A program {x̄(t), ȳ(t)} from xo is called optimal if
∑∞

t=0 ρtu(x(t), x(t + 1))

≤ ∑∞
t=0 ρtu(x̄(t), x̄(t + 1)) holds for every program {x(t), y(t)} from xo. A

program {x(t), y(t)} is called stationary if for all t ∈ N, we have (x(t), y(t)) =
(x(t + 1), y(t + 1)). A stationary optimal program is a program that is stationary
and optimal.

The parameter ξ = (1/a) − (1 − d) plays an important role in all of our
subsequent analysis. It represents the marginal rate of transformation of capital
today into that of tomorrow, given full employment of both factors. In what follows,
and without further mention, we always assume that the parametrs (a, d) of the
RSS model are such that ξ > 1. For more details, highlighting the geometric and
analytical aspects of the model, the reader is referred to Khan and Mitra (2006,
2007b).

2.1. Dynamic Programming

Using standard methods, one can establish that there exists an optimal program
from every x ∈ X ≡ [0,∞). Thus, we can define a value function, V : X → R,
by

V (x) =
∞∑
t=0

ρtu(x̄(t), x̄(t + 1)), (1)

where {x̄(t), ȳ(t)} is an optimal program from x. Then, it is straightforward to
check that V is concave, nondecreasing, and continuous on X. Further, it can be
verified that V is, in fact, increasing on X.

It can be shown that for each x ∈ X, the Bellman equation

V (x) = max
x ′∈�(x)

{u(x, x ′) + ρV (x ′)} (2)

holds. For each x ∈ X, we denote by h(x) the set of x ′ ∈ �(x) that maximize
{u(x, x ′) + δV (x ′)} among all x ′ ∈ �(x). That is, for each x ∈ X, we have
h(x) = arg[maxx ′∈�(x){u(x, x ′) + ρV (x ′)}].Thus, a program {x(t), y(t)} from
x ∈ X is an optimal program from x if and only if it satisfies the equation
V (x(t)) = u(x(t), x(t + 1)) + δV (x(t + 1)) for t ≥ 0; that is, if and only if
x(t + 1) ∈ h(x(t)) for t ≥ 0.

We call h the optimal policy correspondence. It can be shown to be upper hemi-
continuous. When this correspondence is a function, we refer to it as the optimal
policy function (OPF). Thus, when an OPF exists, it is necessarily continuous.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100511000502
Downloaded from https://www.cambridge.org/core. NYU School of Medicine, on 29 Aug 2019 at 19:29:38, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100511000502
https://www.cambridge.org/core


74 M. ALI KHAN AND TAPAN MITRA

2.2. The Modified Golden Rule

A modified golden rule is a pair (x̂, p̂) ∈ R2
+ such that (x̂, x̂) ∈ � and u(x̂, x̂) +

(ρ − 1)p̂x̂ ≥ u(x, x ′) + p̂(ρx ′ − x) for all (x, x ′) ∈ �.

The existence of a modified golden rule has already been established in Khan and
Mitra (2007b). We reproduce that result here (without proof) for ready reference.
A distinctive feature of our model is that we can describe the modified golden
rule stock explicitly in terms of the parameters of the model, and it is independent
of the discount factor; the modified golden rule price, of course, depends on the
discount factor.

PROPOSITION 1. Define (x̂, p̂) = (1/(1 + ad), 1/(1 + ρξ)). Then (x̂, x̂) ∈
�, where x̂ is independent of ρ, and

u(x̂, x̂) + (ρ − 1)p̂x̂ ≥ u(x, x ′) + p̂(ρx ′ − x) for all (x, x ′) ∈ �. (3)

The connection between the value function in the dynamic programming ap-
proach and the modified golden rule may be noted as follows. Given a modified
golden rule (x̂, p̂) ∈ R2

+, we know that x̂ is a stationary optimal stock [see
McKenzie (1986, p. 1305)]. Consequently, we have V (x̂) = x̂/(1 − ρ).

2.3. Basic Properties of the Optimal Policy Correspondence

The basic properties of the optimal policy correspondence, with no additional
restrictions on the parameters of our model, have already been described in Khan
and Mitra (2007b). We summarize these properties hereafter. This helps us to
present an explicit solution of the optimal policy correspondence in the next
section.

To this end, we describe three regions of the state space: A = [0, x̂], B =
(x̂, k), C = [k,∞), where k = x̂/(1−d). We further subdivide the region B into
two regions as follows: D = (x̂, 1), E = [1, k). In addition, we define a function,
g : X → X, by

g(x) =
⎧⎨
⎩

(1 − d)x for x ∈ C

x̂ for x ∈ B

(1/a) − ξx for x ∈ A

(4)

and a function H : X → X by

H(x) =
{

(1 − d)x for x ∈ C ∪ E

(1/a) − ξx for x ∈ A ∪ D.
(5)

We refer to g as the “pan map,” in view of the fact that its graph resembles a
pan. We refer to H as the “check map,” following the terminology of Day and
Pianigiani (1991), because its graph resembles the standard check mark.
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LONG-RUN BEHAVIOR IN THE TWO-SECTOR RSS MODEL 75

Finally, we define a correspondence, G : B → X, by

G(x) =
{

[(1 − d)x, x̂] for x ∈ E

[(1/a) − ξx, x̂] for x ∈ D.
(6)

PROPOSITION 2. The optimal policy correspondence, h, satisfies

h(x) ⊂
{ {g(x)} for all x ∈ A ∪ C

G(x) for all x ∈ B.
(7)

Further, when ρξ > 1, the optimal policy correspondence, h, is an optimal policy
function, given uniquely by the pan map, g. When ρξ = 1, the optimal policy
correspondence, h, is given by the correspondence G for all x ∈ B.

It should be clear from this result that the only part of the optimal policy
correspondence for which we do not have an explicit solution (in general) is for
the middle region of stocks, given by B = (x̂, k) = D ∪ E, when ρξ < 1.

3. EXPLICIT SOLUTION OF THE OPTIMAL POLICY FUNCTION

In this section we present an explicit solution2 of the optimal policy function under
further technological and discount factor restrictions on the RSS model (a, d, ρ).

Specifically, we provide three separate restrictions under which the optimal policy
correspondence is a function, given uniquely by the check map, H.

The first result imposes no restriction on the technological parameters, so that
any (a, d) permissible by the description of the model in Section 2 can be allowed.
It imposes a strong restriction on the discount factor, demanding that it be less
than the labor–output ratio, a.

PROPOSITION 3. Suppose the RSS model (a, d, ρ) satisfies ρ < a. Then its
optimal policy correspondence, h, is the function given by the check map H.

Considerable interest attaches to the set of technological parameters (a, d) that
satisfy the condition H 2(1) < k. It indicates that the second iterate of H of the
unit initial stock is less than k. Because ξ > 0, the second iterate of H of the
unit stock always exceeds the modified golden rule stock, x̂. Thus, the condition
ensures that H 2(1) falls inside the interval (x̂, k) ≡ B, the zone of stocks for
which we do not have an explicit form of the optimal policy correspondence in
general; we refer to this conveniently as the “inside case.” If H 2(1) > k, then
H 2(1) falls outside the interval (x̂, k) ≡ B, and we refer to this as the “outside
case.” If H 2(1) = k, then we refer to this as the “borderline case,” it being the
borderline between the inside and outside cases.

The three cases can be restated explicitly in terms of the technological parame-
ters (a, d), or equivalently (ξ, d), of the model. In fact, one can verify that

H 2(1) ≤ k ⇐⇒ [ξ − (1/ξ)] (1 − d) ≤ 1. (8)
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76 M. ALI KHAN AND TAPAN MITRA

To see this, let us define the closed intervals J1 = [1 − d, x̂]; J2 = [x̂, 1]; J3 =
[1, k], and denote H 2(1) by k′. Denote the length of the interval J2 by θ. Notice
that H maps J2 onto J1, and the relevant slope for this domain is (−ξ), so that
the length of J1 is ξθ. Further, H maps J3 onto J1, and the relevant slope for this
domain is (1 − d), so that the length of J3 = ξθ/(1 − d). Thus, the length of
J2 ∪J3 = [x̂, k] is {θ + [ξθ/(1 − d)]}. On the other hand, H maps J1 onto [x̂, k′],
and the relevant slope for this domain is (−ξ), so that k′ > x̂ and [k′ − x̂] = ξ 2θ.

Thus, we obtain
k′ ≤ k ⇐⇒ ξ 2 ≤ 1 + [ξ/(1 − d)] (9)

One can rewrite the right-hand inequality in (9) as

ξ ≤ {(1/ξ) + [1/(1 − d)]}. (10)

By transposing terms, (10) is the same as the right-hand side of (8). Thus, using
the equivalence in (9), we have demonstrated that the equivalence in (8) holds.

When the technological parameters are restricted so that (ξ, d) satisfies the
inequality on the right-hand side of (8) (that is, we are in the inside or the borderline
case), then a weaker restriction than ρ < a on the discount factor ρ ensures that
the optimal policy correspondence is a function given by the check map, H.

PROPOSITION 4. Suppose the RSS model (a, d, ρ) satisfies [ξ − (1/ξ)](1 −
d) ≤ 1, and

ρ <
√

a/ξ ≡ η. (11)

Then its optimal policy correspondence, h, is the function given by the check map
H.

Note that because ξ = (1/a)− (1−d), we have ξ < (1/a), and so (a/ξ) > a2.

Thus η > a, and because (11) requires only that ρ < η, it ensures that the
optimal policy correspondence, h, is the check map H not only when ρ < a,

but also when ρ ∈ [a, η). The price one pays for the weaker discount factor
restriction is of course that Proposition 4 applies under the technological restriction
[ξ − (1/ξ)](1−d) ≤ 1, whereas Proposition 3 holds without any such restriction.

If one strengthens the technological restriction even further so that (ξ, d) sat-
isfies the inequality ξ(1 − d) ≤ 1, then an even weaker restriction than (11) on
the discount factor ρ ensures that the optimal policy correspondence is a function
given by the check map H.

PROPOSITION 5. Suppose the RSS model (a, d, ρ) satisfies ξ(1 − d) ≤ 1,

and
ρ < 1/ξ. (12)

Then its optimal policy correspondence, h, is the function given by the check map,
H.

Note that because ξ = (1/a)−(1−d), we have aξ < 1, so that (a/ξ) < (1/ξ 2)

and η < (1/ξ). Because (12) requires only that ρ < (1/ξ), it ensures that the
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optimal policy correspondence h is the check map H not only when ρ < η,

but also when ρ ∈ [η, (1/ξ)). The trade-off for the even weaker discount factor
restriction (12) is that Proposition 5 applies under the technological restriction
ξ(1 − d) ≤ 1, whereas Proposition 4 holds under the technological restriction
[ξ − (1/ξ)](1 − d) ≤ 1, which is clearly weaker.

The economic interpretation of the sufficient conditions enruring that the opti-
mal policy function is given by the check map can be seen as follows. The sufficient
condition ρ < a relates the intertemporal rate of substitution between consump-
tion today and tomorrow, which is ρ (because the utility function is linear in
consumption), to a lower bound on the intertemporal rate of transformation, given
by a. Thus, if x ∈ (1, k) and x ′ > (1 − d)x, then one can increase consumption a
little (by say ε > 0) by increasing labor input in the consumption goods sector by
ε, and reducing labor input in the investment good sector by ε. This will reduce the
capital stock in the next period by (ε/a). One can then reduce consumption in the
next period by (ε/a) by reducing labor input in the consumption good sector in the
next period. It can be seen that the economy will have a higher capital stock at the
end of this two-period variation. Thus, if ρ < a, then this variation will increase
the discounted sum of utilities by [ε − ρ(ε/a)] > 0, and leave the economy with
a higher capital stock at the end of this two-period variation. Thus, if x ∈ (1, k),

it is not optimal to have x ′ > (1 − d)x, and therefore the optimal policy must
have x ′ = (1 − d)x. If x ∈ (x̂, 1], the situation is a bit more complicated, because
the previously described variation made use of the fact that the capital stock x

exceeds the consumption level y. (This is always true when x ∈ (1, k), because
x > 1 ≥ y, but is clearly not true when x ∈ (x̂, 1]). However, if (x̂, 1], and
x ′ > (1/a)− ξx, then x ′ > (1−d)x is automatically satisfied, and further y < x,

so that the preceding argument can be used to show that it is not optimal to have
x ′ > (1/a) − ξx. Thus the optimal policy must have x ′ = (1/a) − ξx when
x ∈ (x̂, 1]. This establishes that the check map is optimal.

The sufficient conditions in Propositions 4 and 5 can be seen as refinements
of the basic argument. When ρ > a, the two-period variation does not yield a
dominating action. However, at the end of the two-period variation, the economy
has a higher capital stock by a magnitude equal to ξ(ε/a), and one has to evaluate
the discounted value of future streams of extra consumption (beyond the two
periods) that can be obtained from this higher capital stock. This consideration
leads to sufficient conditions that involve ρ < η (in Proposition 4) and ρ < (1/ξ)

(in Proposition 5), which can hold even when ρ > a.

4. BIFURCATION ANALYSIS

In this section, we provide a bifurcation analysis of the long-run optimal dynamics
generated by the RSS model. The analysis can be naturally divided into two parts.
First, we need a full bifurcation analysis of the dynamics of the check map,
which is described purely by the technological parameters (a, d). Second, we
need to graft onto that analysis technological and discount factor restrictions
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78 M. ALI KHAN AND TAPAN MITRA

(described in the previous section) under which the check map represents the
optimal policy function, so that the bifurcation analysis of the dynamics of the
check map describes changes in long-run optimal behavior with respect to the
parameters of the model.

4.1. Dynamics of the Check Map

We first describe how the long-run dynamics of the check map depend on the
technological parameters (a, d) [equivalently the parameters (ξ, d)]. This is ac-
complished by (i) transforming the check map through a linear transformation
of the variable (capital stock) to an asymmetric tent map, and (ii) applying the
rather complete analysis of the dynamics of the asymmetric tent map presented
by Lindström and Thunberg (2008).

When we specialize this analysis to the “inside case,” a rather remarkable picture
emerges regarding the optimal dynamics. Generically, either one has ξ(1−d) < 1,

in which case there is a period-two cycle that attracts trajectories from almost all
initial conditions; or one has ξ(1 − d) < 1, in which case, every periodic point
is repelling, and almost all trajectories have positive Lyapunov exponents. Thus,
trajectories starting from very similar initial stocks tend to separate from each
other exponentially over time, indicating a strong form of sensitive dependence
on initial conditions, which is a characteristic of chaotic behavior.3

To paraphrase, one has very simple dynamics for ξ(1−d) < 1, and immediately
after crossing the bifurcation point to the range ξ(1 − d) > 1, one has chaotic
behavior. The usual period-doubling route to chaos, found in the symmetric tent
map, is noticeably absent.

To proceed, let us define L = (1/ad) and Y = [0, L]. Then Y is a natural state
space for the variable x (the capital stock), because if x ∈ Y, then H(x) ∈ Y, so
that Y is an invariant set. If x > L, then some finite iterate of H belongs to Y,

so no aspect of long-run dynamics is lost by confining attention to Y as the state
space. To simplify notation, we denote by H again the restriction of the check map
to Y ; the dynamical system can then be denoted by (Y,H), where H is given by

H(x) =
{

(1/a) − ξx, for x ∈ [0, 1]
(1 − d)x, for x ∈ (1, L].

(13)

Given that the check map is like a mirror image of an asymmetric tent map, the
route to follow is to convert the map H given by (13) to a map F, which is an
asymmetric tent map, by a linear transformation of the variable x.

If we define the linear transformation Z = L−x, the dynamical system (Y,H)

is transformed into the dynamical system (Y, F ), where Z is the state variable,
and F is given by the asymmetric tent map

F(Z) =
{

P − ξ(Z − Z∗), for Z ∈ [Z∗, L]
P + (1 − d)(Z − Z∗), for Z ∈ [0, Z∗), (14)

where Z∗ = L − 1 and P = (1/a) + (1 − d)Z∗.4
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The dynamical system (Y, F ) has been studied in detail by Lindström and
Thunberg (2008), who conclude from their study that the system exhibits “a very
special type of dynamical pattern with respect to the bifurcation parameters” and
the “transition to chaos is far from standard.” It is possible to study the asymmetric
tent map directly, but because we would like to apply the results of Lindström
and Thunberg (2008), we follow them to make one more linear transformation of
variables to reduce the number of parameters from three to two, so that the key
parameters become the slopes of the two straight lines of the tent map F.

If we define the linear transformation z = [(Z −Z∗)/d], the dynamical system
(Y, F ) is transformed into the dynamical system (Q, f ), where z is the state
variable, f is given by the asymmetric tent map

f (z) =
{

1 − ξz, for z ∈ [0, (1/d)]
1 + (1 − d)z, for z ∈ [−(L − 1)/d, 0),

(15)

and Q ≡ [−(L − 1)/d, 1/d] is the state space.5

In Theorem 4.1 of their paper, Lindström and Thunberg provide a complete
description (with proofs) of the dynamics of (15) for all (generic) values of the
slopes of the two branches of the asymmetric tent map. Our parameters ξ and
(1−d) correspond to their parameters k and c, respectively. However, in our case,
there are several restrictions on the parameters; we have 0 < (1 − d) < 1 and
ξ > 1. So only some of the cases of their Theorem 4.1 apply in our case.6 Further,
it will facilitate our discussion of the RSS model to have a statement of their
theorem in terms of the original variable (capital stock, x) of the RSS model.7

THEOREM 6. Trajectories generated by the dynamical system (Y,H) have
the following properties:

(I) If ξ > 1 and ξ(1 − d) < 1, then there exists a period-two cycle attracting
trajectories from almost all initial conditions x ∈ Y.

(II) If ξ > 1 and ξ(1 − d) > 1, and there is n ≥ 3, such that

1 − (1 − d)n−1

d(1 − d)n−2
=

[
n−2∑
s=0

1

(1 − d)s

]
< ξ <

1

(1 − d)n−1
, (16)

then there is a period-n cycle attracting trajectories from almost all initial condi-
tions x ∈ Y.

(III) If ξ > 1 and ξ(1 − d) > 1, and ξ is outside the regions specified by
(16), trajectories from almost all initial conditions x ∈ Y enter and remain in the
interval [(1 − d), (1 − d) + dξ ] and have positive Lyapunov exponent.

Let us note that q(n) ≡ ∑n−2
s=0 [1/(1 − d)s] appearing in (16) is monotone

increasing in n, and so q(n) attains a minimum at n = 3 among all n ∈ N with
n ≥ 3. Thus, in order for (16) to apply, it is necessary to have

ξ > q(3) = [(2 − d)/(1 − d)]. (17)
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In the “inside” and “ borderline” cases, we have H 2(1) ≤ k, which is equivalent
to the condition [ξ−(1/ξ)](1−d) ≤ 1. Now, because ξ > 1, this condition implies
that

ξ(1 − d) ≤ 1 + [(1 − d)/ξ ] < (2 − d). (18)

Clearly, (18) implies that (17) cannot hold. That is, in the “inside” and “ borderline”
cases of the RSS model, (16) never holds, and the only possibilities are (I) or (III)
in Theorem 1. We state this as a separate result.

PROPOSITION 7. Consider the RSS model with (a, d) satisfying the restriction
[ξ − (1/ξ)](1 − d) ≤ 1. Then trajectories generated by the dynamical system
(Y,H) have the following properties:

(i) If ξ(1 − d) < 1, then there exists a period-two cycle attracting trajectories
from almost all initial conditions x ∈ Y.

(ii) If ξ(1 − d) > 1, trajectories from almost all initial conditions x ∈ Y enter
and remain in the interval [(1 − d), (1 − d) + dξ ] and have positive Lyapunov
exponent.

4.2. Bifurcation Analysis with Respect to the Labor–Output Ratio

Propositions 3, 4, and 5 can be combined with Theorem 1 to provide a variety of
results relating to bifurcation analysis of the optimal dynamics generated by the
RSS model. We will confine ourselves to one such application, which will illustrate
the general approach. This will be to the “inside” or “borderline” cases, because
that will allow us to apply the striking threshold result contained in Proposition 7.

To this end, define the following functions of d on the open interval (0, 1) :

σ(d) = 1/(1 − d); ξ(d) = ( 1
2 )[σ(d) +

√
σ(d)2 + 4],

a(d) = 1/[ξ(d) + (1 − d)]; η(d) = 1/{√ξ(d)[ξ(d) + (1 − d)]}.

}
(19)

That is, given d ∈ (0, 1), ξ(d) is chosen to satisfy {ξ(d) − [1/ξ(d)]}(1 − d) = 1.

Then a(d) is chosen to satisfy ξ(d) = (1/a(d)) − (1 − d), and η(d) is chosen to
satisfy η(d) = √

a(d)/ξ(d).

Now pick any d̂ ∈ (0, 1) and any ρ̂ ∈ (0, η(d̂)) and fix them. Define

a∗ = 1/[2 − d̂]; ā = a(d̂). (20)

Then, for every a ∈ [ā, a∗), the RSS model (a, d̂, ρ̂) satisfies

ξ(d̂) ≥ ξ > 1 and [ξ − (1/ξ)](1 − d̂) ≤ 1, (21)

where ξ ≡ (1/a) − (1 − d̂). Further, by (20) and (21),

√
(a/ξ) ≥

√
a(d̂)/ξ(d̂) = η(d̂) > ρ̂. (22)

Thus, by Proposition 5, the optimal policy correspondence h of the RSS model
(a, d̂, ρ̂) is a function given by the check map H. This allows us to conduct a
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bifurcation analysis of long-run optimal dynamics for the RSS model (a, d̂, ρ̂)

with respect to the labor–output ratio a, as a varies in the interval [ā, a∗). We state
our finding formally as a result.

PROPOSITION 8. Consider an RSS model for which the depreciation factor is
fixed at some d̂ ∈ (0, 1), and the discount factor is fixed at ρ̂ ∈ (0, η(d̂)). Define
a∗ and ā as in (30), � ≡ [ā, a∗), and

ã ≡ 1/[σ(d̂) + (1 − d̂)]. (23)

(i) If a ∈ � and a > ã, then there exists a period-two optimal cycle attracting
optimal trajectories from almost all initial conditions x ∈ Y.

(ii) If a ∈ � and a < ã, optimal trajectories from almost all initial conditions
x ∈ Y enter and remain in the interval [(1 − d̂), (1 − d̂) + d̂ξ ] and have positive
Lyapunov exponent.

Proposition 7 indicates that there is a threshold labor–output ratio, ã. If the
actual labor–output ratio is higher than this threshold level, the typical optimal
dynamics will be very simple, with almost all optimal trajectories converging to a
(necessarily unique) period-two optimal cycle. If the actual labor–output ratio is
lower than this threshold level, the typical optimal dynamics will be complicated.

5. EXPLICIT SOLUTION OF AN INVARIANT DENSITY

The previous section has demonstrated ranges of parameter values of the RSS
model for which the dynamical system will have a positive Lyapunov exponent;
one can also show that the dynamical system will have an invariant distribution
that is absolutely continuous with respect to Lebesgue measure on the reals.8 The
nature of the invariant distribution of the dynamical system is, however, far from
clear in general.

Our objective in this section is to demonstrate how one can explicitly solve
for a unique ergodic absolutely continuous invariant measure for a dynamical
system generated by the optimal policy function of the RSS model, for a particular
parameter configuration resulting in the “borderline case.” Although we focus on
a particular case, our method will exhibit the following features:

(i) We will show how the general method9 of Boyarsky and Scarowsky (1979) allows one
to compute the unique invariant density by calculating the eigenvector of a Markov
transition matrix, A, defined by the check map H.

(ii) In solving for the invariant density, we will see that the parametric restriction is
equivalent to stating that the matrix (I − A) is singular.

(iii) We will be able to infer the “sojourn time” of a “typical optimal trajectory” in any
subinterval of [(1 − d), k], which is the support of the unique invariant density, by
invoking the ergodic theorem. The explicit solution shows that in the borderline case,
the capital stock along a typical optimal trajectory will spend half the time above the
golden rule stock.
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Consider the RSS model (a, d, ρ) in the borderline case; that is, (a, d) are such
that

[ξ − (1/ξ)](1 − d) = 1. (24)

Further, ρ is such that
ρ <

√
a/ξ ≡ η. (25)

Then, by Proposition 4, the optimal policy correspondence h is a function, given
by the check map H.

5.1. A Markov Matrix and Its Eigenvector

To apply the method of Boyarsky and Scarowsky (1979) to obtain the invariant
density associated with the optimal policy function H, we have to verify that H

belongs to the class of functions to which their results apply. To this end, we
proceed as follows.

Let us define the closed intervals J1 = [1 − d, x̂], J2 = [x̂, 1], J3 = [1, k],
and the corresponding open intervals I1 = [1 − d, x̂], I2 = [x̂, 1], I3 = [1, k].

Define J = J1 ∪J2 ∪J3, and consider the map H : J → R. Then H is in fact a
map from J to J. Consider the set of open intervals � = {I1, I2, I3}. Then for each
Ir (with r ∈ {1, 2, 3}), H is C2 on Ir , and can be extended to a C2 function on Jr .

We refer to � as a partition of J, and the set of points M = {(1 − d), x̂, 1, k} as
the partition points, following Boyarsky and Scarowsky (1979).

Except for the turning point x = 1, H is differentiable on J, and H ′(x) ≥
(1 − d) > 0 for all x ∈ J\{1}. There exist b ∈ I1 and b′ > k such that
H(b) = H(b′) = 1. Thus, H is not differentiable at H(b) = H(b′) = 1, and
so the function H 2 is not differentiable at b and at b′. By the chain rule, H 2 is
differentiable at all points in J except the points in N = {1, b}. Further, we have
dH 2(x)/dx ≥ ξ(1 − d) on J\N. Using (24), we have ξ(1 − d) > 1. This verifies
that H 2 is expanding.

Because H(k) = x̂, H(x̂) = x̂, H(1) = (1 − d), and H((1 − d)) = k, the
function H maps the partition points into the partition points.

Finally, note that H(I1) ⊃ I2 ∪ I3, H(I2) ⊃ I1 and H(I3) ⊃ I1. Thus, for
each Ir , Is , where r, s ∈ {1, 2, 3}, there exist positive integers m and n such that
Hm(Ir) ⊃ Is and Hn(Is) ⊃ Ir . Thus, H satisfies the communication property of
Boyarsky and Scarowsky (1979).

We have now verified that H : J → J belongs to the class C as defined in
Boyarsky and Scarowsky (1979, p. 244). Thus, by their Theorem 1 (p. 246), there
is a unique absolutely continuous invariant measure. It is ergodic. Further, by
their Theorem 3 (p. 259), the density corresponding to this measure is piecewise
constant.10

The density can be explicitly calculated11 by defining a Markov transition matrix
A = (aji) by

aji =
{ |H ′

i |−1 if Ij ⊂ Hi(Ii)

0 otherwise,
(26)
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where Hi is the restriction of H to Ii . Then the solution to the invariant density
is given by E = (e1, e2, e3), where AE = E. That is, E is the eigenvector of
A corresponding to the eigenvalue of 1. Denoting by φ the invariant density, we
have: φ(x) = ei for x ∈ Ii for i ∈ {1, 2, 3}, and φ(x) = 0 for x ∈ R\J.

Using (26), we can obtain the matrix A in our case as follows:

A =
⎡
⎣ 0 ξ−1 (1 − d)−1

ξ−1 0 0
ξ−1 0 0

⎤
⎦ . (27)

With A given by (27), det(A − I ) can be evaluated as follows:

det(A − I ) = [1/ξ 2] − [1 − {1/ξ(1 − d)}] = 0, (28)

where the second equality in (28) follows from the parametric restriction (24).
Thus the parametric restriction (24) ensures that there is a nontrivial solution to
AE = E. This solution can be found by noting that

(i) ξ−1e2 + (1 − d)−1e3 = e1, (29)

(ii) ξ−1e1 = e2,

(iii) ξ−1e1 = e3

must hold at any solution E to AE = E, by using (27).
Clearly, e2 = e3 from (29)(ii) and (29)(iii). Denoting this common value by e,

we get from (29)(i)
[ξ−1 + (1 − d)−1]e = e1. (30)

Thus, E is solved except for a normalization. Because E is the density, which is
piecewise constant on the intervals of the partition, we have

ν(I1) = ξθe1 = ξθ [ξ−1 + (1 − d)−1]e, (31)

ν(I2) = θe,

ν(I3) = [ξθ/(1 − d)]e,

where ν is the invariant measure corresponding to the invariant density, and θ =
(1−x̂) is the length of J2. Thus, e can be found by setting ν(I1)+ν(I2)+ν(I3) = 1,

and then E can be found to be

[e1 e2 e3] = [(ξ + 1)/2ξd (ξ + 1)/2ξ 2d (ξ + 1)/2ξ 2d]. (32)

For a numerical example, consider a = (3/8), d = (1/3). Then we have
θ = (1 − x̂) = (1/9), ξ = 2, and [ξ − (1/ξ)](1 − d) = 1, so the parametric
restriction (24) is satisfied, Then, using (32), the density φ is given by φ(x) = (9/4)

for x ∈ I1, and φ(x) = (9/8) for x ∈ I2 ∪ I3.
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5.2. Sojourn Time

Because ν is ergodic, the Birkhoff pointwise ergodic theorem applies. Because
f (x) > 0 for Lebesgue almost every x, the measure ν is equivalent to Lebesgue
measure on J ; that is, if S is a (Lebesgue) measurable set in J, then ν(S) > 0 if
and only if m(S) > 0, where m is Lebesgue measure on the reals. Thus, we can
infer that for Lebesgue almost every x ∈ J, we have

lim
T →∞

(1/T )

T −1∑
t=0

χ [Ir;Ht(x)] =
∫

J

χ(Ir; x)f (x)dx =
∫

Ir

f (x)dx = ν(Ir),

(33)
where χ(Ir; ·) is the characteristic function of the interval Ir .

The left-hand side expression in (33) is the “sojourn time” of the optimal
trajectory, starting from x, in the interval Ir . That is, it is the fraction of time spent
by the optimal trajectory, starting from x, in the interval Ir . The formula (33) tells
us that this can be measured by ν(Ir) for Lebesgue almost every x ∈ J. Thus,
ν(Ir) measures the fraction of the time spent by the “typical” optimal trajectory
in the interval Ir .

Note from (31) and (32) that ν(I1) = ξ [(1/ξ) + {1/(1 − d)}]θe = [1 +
{ξ/(1 − d)}]θe = ν(I2) + ν(I3). Thus, ν(I1) = 1 − ν(I1) and ν(I1) = (1/2), and
ν(I2 ∪ I3) = (1/2). So the “ typical” optimal trajectory spends half the time above
the golden rule stock and half the time below it.

NOTES

1. See, for example, Boldrin and Montrucchio (1986), Deneckere and Pelikan (1986), Majumdar
and Mitra (1994) and Nishimura et al. (1994).

2. The proofs of Propositions 3,4, and 5 in Section 3 are omitted. Proofs of Propositions 3 and 4
can be found in Khan and Mitra (2007a). Proofs of Proposition 5 can be found in Khan and Mitra
(2006, 2010).

3. A positive Lyapunov exponent is one of the standard indicators of a chaotic dynamical system.
For a definition and discussion of the concept, see for example Eckman and Ruelle (1985).

4. The map given in (14) is the standard form of the threshold autoregressive model (TAR(1)
model) studied in nonlinear time series analysis by Tong (1990).

5. The map F corresponds to the map T (·) described in equation (1) of Lindström and Thunberg
(2008). Note that (P − Z∗) = d > 0, so the map f corresponds to the map t (·) described in equation
(2) of Lindström and Thunberg (2008). Because they analyze the map t (·) in detail in their paper, we
are now all set to directly apply their results.

6. Specifically, parts (I), (II), and (III) of our Theorem 6 correspond to parts (f), (g), and (h),
respectively, of Theorem 4.1 in Lindström and Thunberg (2008).

7. For the RSS model under consideration, the “almost all initial conditions” phrase in Theorem 6
can be replaced by “all stocks except the golden-rule stock” in result (I). A geometric demonstration
of this is contained in Khan and Mitra (2010).

8. This can be done by applying the result of Lasota and Yorke (1973).
9. After our paper had been completed, an interesting paper of Matsumoto (2005) came to our

attention. Matsumoto uses the Boyarsky–Scarowsky method to obtain the invariant density for a
piecewise linear map along the lines that we follow in Section 5.1. Our principal interest in obtaining
the invariant density explicitly is that it allows us to relate it to the parameters of our optimal growth
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model, and thereby make a prediction of the sojourn time of a typical optimal trajectory above
the modified golden rule. Because Matsumoto is not concerned with an optimal growth model, this
motivation as well as the application is absent in his study.

10. Day and Pianigiani (1991) provide an explicit solution of an invariant measure for the dynamical
system associated with their model by assuming that it is piecewise constant.

11. See Boyarsky and Scarowsky (1979, p. 260) for a complete explanation.
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